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Region-based analysis of rare genomic variants in whole-
genome sequencing datasets reveal two novel Alzheimer’s
disease-associated genes: DTNB and DLG2
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Disease Neuroimaging Initiative (ADNI)*, Michael W. Weiner9, David W. Fardo 7,8, Nan Laird4, Lars Bertram 10,11, Winston Hide 2,6,
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Alzheimer’s disease (AD) is a genetically complex disease for which nearly 40 loci have now been identified via genome-wide
association studies (GWAS). We attempted to identify groups of rare variants (alternate allele frequency <0.01) associated with AD
in a region-based, whole-genome sequencing (WGS) association study (rvGWAS) of two independent AD family datasets (NIMH/
NIA; 2247 individuals; 605 families). Employing a sliding window approach across the genome, we identified several regions that
achieved association p values <10−6, using the burden test or the SKAT statistic. The genomic region around the dystobrevin beta
(DTNB) gene was identified with the burden and SKAT test and replicated in case/control samples from the ADSP study reaching
genome-wide significance after meta-analysis (pmeta= 4.74 × 10−8). SKAT analysis also revealed region-based association around
the Discs large homolog 2 (DLG2) gene and replicated in case/control samples from the ADSP study (pmeta= 1 × 10−6). In
conclusion, in a region-based rvGWAS of AD we identified two novel AD genes, DLG2 and DTNB, based on association with rare
variants.
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INTRODUCTION
Alzheimer’s disease (AD) is a heterogeneous, genetically complex
neurodegenerative disorder [1]. Over the past 15 years, around
120 genome-wide association studies (GWAS) have been
performed to elucidate the genetic architecture underlying AD
according to the GWAS catalog [2]. The latest GWAS which has
utilized over 1 million individuals ascertained from clinical and
proxy-based AD cases and controls has identified 38 independent
loci to be associated with AD [3]. GWAS heritability which is
tagged by common variants is estimated to be 24-33% [4, 5] - less
than a half of the heritability calculated from twin studies [1].
Identification of rare variants associated with AD may help explain
the missing heritability, and lead to new biological insights [6].
Several rare variant loci previously associated with AD [7],
including TREM2 [8, 9], have been identified with whole-exome
sequencing (WES) studies [10].
Identification of association signals that are driven by rare

variants remains cumbersome due to low power and relatively
small sample sizes. Hence, aggregation methods, such as burden
tests [11, 12] and variance component tests (SKAT) [13, 14], have

been developed to jointly test regions of rare variants for
association. Combining variant data increases the association
signal and reduces the number of statistical tests. While burden
tests are most powerful for signals with consistent effect
directions, SKAT is more powerful for signals with different effect
directions or when the fraction of causal variants within a region is
small. Previously, aggregated gene-based association analyses
have been successful in identifying exome-wide significant
associations with sporadic AD [15–18]. This includes burden rare
variant signals in genes with variants previously associated with
AD, such as ABCA7, PILRA, SORL1, TREM2, as well as novel genes,
such as ZNF655. Recently, we have performed a rare variant
region-based analysis in whole-genome sequencing (WGS) data
[19] using a family-based design and a burden family-based
association test (FBAT), which was based on estimating the
correlation between rare variants based on the observed empirical
distribution [20]. Furthermore, an applicable SKAT approach in
FBAT was not available at the time of the first manuscript [19]. In
the current study, we utilize two novel and complementary region
tests (burden and variance component (SKAT)) within a recently
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developed general framework for exact region-based association
testing in family-based designs [21]. The former relates to an
improved haplotype algorithm for rare variants recently devel-
oped by Hecker et al [22, 23]. This approach alleviates the need to
use approximations of the correlation between rare variants: The
joint conditional distribution of the rare variants can now be
simply obtained by the haplotype approach. Using the proposed
region-based testing framework and a systematic region defini-
tion, we performed a rvGWAS combining two AD family-based
cohorts (605 families; 1509 affecteds; 738 unaffecteds) focusing on
rare variants. For replication, we used case/control subjects from
NIA ADSP, which included WGS data from a Non-Hispanic White
(NHW) subcohort (983 cases; 686 controls), an African-American
(AA) subcohort (450 cases; 501 controls), and a Hispanic (HISP)
subcohort (486 cases; 613 controls).
Using a p value cutoff of 5 × 10−6, the burden test and SKAT

identified several genomic regions showing association with AD risk.
A region identified by the burden test in the DTNB gene (p= 7 ×
10−8) was replicated in the NHW samples. SKAT analysis revealed an
association with variants encompassing a region around DLG2
(p= 4 × 10−6), which replicated in the NHW and the AA samples.

METHODS
Study populations
Discovery family-based dataset. Our discovery dataset consisted of two
WGS family-based cohorts: the National Institute of Mental Health (NIMH)
family AD cohort [24] and families from the National Institute of Aging
Alzheimer’s Disease Sequencing Project [25] (NIA ADSP). Whole-genome
sequencing and variant calling in NIMH are described elsewhere [26].
Variant calls for the families from the NIA ADSP cohort were obtained from
the National Institute on Aging Genetics of Alzheimer’s Disease Data
Storage Site (NIAGADS; URLs) under accession number: NG00067. Both
cohorts consisted of multiplex AD families with affected and unaffected
siblings (Supplementary table 1). A subject was considered to be affected if
he/she was included in one of the following categories: “Definite
AD”,”Probable AD” or”Possible AD”. Subjects were counted as unaffected
by AD if they either had no diagnosis of dementia, or suspected dementia
(46 subjects), or non-AD dementia (10 subjects). Given FBAT’s robustness
to model misspecifications [27] (including case vs. control status) this
strategy will generally result in an increase of statistical power (owing to
the larger sample size). It is important to note that even in families where
the non-AD or suspected dementia is actually the result of an overlooked
diagnosis of AD, this will not lead to spurious findings but merely reduce
statistical power. It is important to note that NIA ADSP families by design
did not include individuals with two APOE-ε4 alleles. After standard quality
control, both cohorts were merged together.

NIA ADSP case-control dataset. WGS variant calls for the NIA ADSP
replication case-control dataset were obtained from the NIAGADS under
accession number: NG00067 and consisted of the ADSP Discovery-
Extension Case-Control WGS dataset [25] and the ADNI Case-Control WGS
dataset. Samples were remapped to GRCh38 and jointly called with the
families from the NIA ADSP cohort. Full details can be found on NIAGADS
(https://dss.niagads.org/datasets/ng00067/) and elsewhere [28]. Briefly, a
subject was considered affected, if he/she met the NINCDS-ADRDA criteria
for possible, probable, or definite AD, had documented age at onset or age
at death (for pathologically verified cases), and APOE genotyping. All
controls were 60 or more years old and were free of dementia.

Quality control
Briefly, we have excluded individuals based on genotyping rate,
inbreeding coefficient, and family mismatches using identity by descent
(IBD) sharing coefficients. After sample-based quality control, we have
combined two WGS family-based cohorts: NIMH (1393 individuals in 446
families) and families from NIA ADSP (854 individuals in 159 families). In
the merged dataset we excluded multiallelic variants, monomorphic
variants, singletons (i.e., variants with only one alternate allele across the
dataset and variants seen only in one family), indels, and variants which
had one missing allele among 2 alleles in an individual. The remaining
variants were filtered based on Mendel errors, genotyping rate (95%),
Hardy–Weinberg equilibrium (p < 1e−08), calling quality in TOPMed

(URLs), which is a large WGS database with >100,000 individuals
sequenced jointly, and alternate allele frequency as defined in gnomAD
(AF ≤ 1% in either whole gnomAD or nonFinnish European sample) (URLs).

WGS regional-based analysis
We have performed a whole-genome scan for our combined family-based
AD dataset using a newly developed exact framework in FBAT for region-
based association testing [21]. We grouped rare variants in nonoverlapping
consecutive sets of ten based on our discovery family-based dataset. For
each set of rare variants, we considered the burden test and the SKAT test
using Affection Status (coded as 0/1 for unaffected/affected) minus offset
as phenotype. We selected an offset of 0.15 which approximately
corresponds to the population prevalence of AD. We have used FBAT
[29] (URLs), R [30], snakemake [31] and bash commands to implement and
run the described analyses.

Replication
Replication significance level was set to 0.05. In addition, we compute the
combined meta p values and highlight regions that reached overall
Bonferroni-corrected genome-wide significance (p < 6.24 × 10−8). We have
used the SKAT package to perform Burden and SKAT-O tests on the same
sets of rare variants in the case-control replication cohorts. We chose SKAT-O
because it is the optimal test in an extended family of SKAT tests and
combines the power of a burden and SKAT test and it implements a small-
sample adjustment procedure (n < 2000) [14]. As covariates, we used
sequencing center, age, sex, and principal components (to account for
population structure). To recover more recent admixture and better correct
for population stratification in WGS data we calculated principal compo-
nents based on 100,000 rare variants using the Jaccard index [32]. Those
rare variants were randomly selected from a pruned subset of rare variants
(R2 <= 0.01). We have also performed meta-analysis among datasets with
similar ethnical background using the Fisher’s combined probability test.

RNA-Seq and microarray analysis
We explored DLG2 and DTNB genes’ expression based on the Human
Protein Atlas (HPA) RNA-seq data (URLs) and tested for differential
expression of synaptic and immune-related genes including DLG2 and
DTNB genes between normal controls (N= 173, aged 20–99 years) and AD
cases (N= 80) in the brain regions including hippocampus, entorhinal
cortex, superior frontal cortex, and post-central gyrus using microarray
dataset GSE48350, which is available from the Gene Expression Omnibus
Web site (URLs). Differential expression was tested using the “GEO2R” tool.

Network construction
We used Cytoscape 3.8.0 and the StringDB protein-protein interaction
resource [33] (URLs) using only identified protein-protein interactions.
Using a background that agglomerates protein-protein interaction
datasets, we seeded the network with DLG2 and DTNB and identified
direct associations between proteins and DLG2 and DTNB in a global
network. Results were combined using the Genemania server (Utilizing
significantly co-expressed genes across several experimental datasets) [34]
to further capture functional relationships and to build a combined
protein-protein/gene co-expression network.

Functional enrichment
Functional enrichment within the network was performed using the
remote StringDB server linked to Cytoscape “String App Enrichment
function” [35], producing enrichments using the hypergeometric test, with
P values corrected for multiple testing using the method of Benjamini and
Hochberg in known molecular pathways and GO terms as described in
Franceschini et al. [36].

RESULTS
In a region-based whole-genome sequencing rvGWAS focusing on
rare genomic variants, we combined two AD family-based cohorts,
the NIMH Alzheimer’s disease genetics initiative study (NIMH) and
the family component of the NIA ADSP sample. The combined
sample consisted of 1509 affected and 738 unaffected siblings in
families of predominantly European ancestry (Supplementary
Table 1, Methods). 8,011,126 variants passed strict quality control
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and alternate allele frequency (AF) filter of ≤1% (based on
gnomAD [37]). We grouped rare variants into consecutive non-
overlapping regions/windows of ten variants and performed a rare
variant WGS scan over the whole genome (801,124 windows). We
employed a recently developed framework for exact regional-
based analysis within FBAT [21] to analyze these sets of rare
variants using both the burden test and SKAT. These tests are able
to detect different configurations of disease regions - dense
regions with the same effect directions (burden test) or less dense
signals with varying effect directions (SKAT).
Since we restricted our analysis to rare variants (i.e., AF < 0.01)

and given our modest sample size in the family-discovery cohort,
we have used a relatively liberal p value threshold p < 5 × 10−6 to
identify “suggestive associations” by burden test or SKAT. A
stricter Bonferroni-corrected significance threshold would be p=
6.24 × 10−8. Seven loci exhibited suggestive evidence for associa-
tion with AD risk (Fig. 1, Supplementary Fig. 1, Table 1). For
replication analysis, we selected the unrelated, multiethnic WGS
AD subset from the NIA ADSP dataset (Methods). This dataset
consists of three subpopulations: NHW (n= 1669), AA (n= 951),
HISP (n= 1099) (Sample sizes after quality control; Supplementary
Table 1). A region located downstream to DTNB, with a burden p
value of 7 × 10−8 and a SKAT p value of 1.4 × 10−6 in the discovery
dataset, showed a burden p value of 0.0324 and a SKAT-O p value
of 0.054 in the replication ADSP NHW dataset (Table 1 and
Supplementary Table 2). Another region, located in an intron of
DLG2 with a SKAT p value of 4 × 10−6 in the discovery family-
based dataset, showed replication with a significant p value of

0.0143 in the ADSP NHW dataset and a p value of 0.053 in the
ADSP AA dataset (Table 1 and Supplementary Table 3). Two other
regions showed nominally significant replication p values in AA
(SEMA3C, p= 0.046) and HISP (ISX, p= 0.014), but not in NHW.
During the peer review of this paper NIA ADSP released a larger

AD WGS case-control dataset with a 4.5-fold sample size increase
for the NHW subpopulation, which we used for additional
replication analyses. To this end, we recalculated the burden
and the SKAT-O test statistics for our two top hits in n= 7413
NHW individuals (previously n= 1669). The analyses revealed only
minor changes with respect to our original replication results, i.e.,
the burden p value for DTNB increased to 0.0698 while the SKAT-O
p value for DLG2 decreased to 0.0038.
Both DLG2 and DTNB are highly expressed in the brain based on

RNA-data from three different sources: Internally generated
Human Protein Atlas (HPA) RNA-seq data, RNA-seq data from
the Genotype-Tissue Expression (GTEx) project, and CAGE data
from the FANTOM5 project, as well as the consensus dataset for
each gene derived from the Human Protein Atlas [38] (Supple-
mentary Figs. 2, 3). It is important to mention that besides being
expressed in different brain tissues, DTNB is also highly expressed
in salivary gland tissue, which might be due to the fact that the
resulting protein, β-dystrobrevin, is only found in non-muscle
tissues [39]. In the Alzheimer’s Disease Dataset analysis [40]
(GSE48350) from the GEO database [41] expression of DLG2 and
DTNB is significantly decreased in AD compared to control
subjects in at least one of two microarray ids corresponding to
the genes (Supplementary Table 4).

Fig. 1 Manhattan plots of sets of rare variants in the whole-genome scan of the family-based discovery dataset using the burden and
SKAT test. Dashed line corresponds to suggestive threshold of 5 × 10−6.

D. Prokopenko et al.

3

Molecular Psychiatry



Network analysis revealed a network of 33 proteins interacting
with DLG2 and DTNB that were enriched for neuronal synaptic
functions (Supplementary Fig. 4). Functional enrichment of the
subnetwork of proteins directly interacting with DLG2 and DTNB
revealed 694 enriched GO process/ pathway terms (Supplemen-
tary table 5). The most enriched part of the network was for
proteins interacting with DLG2 that are connected to neurexins
and neuroligins, as well as trafficking of AMPA receptors. DLG2
also interacted with 4 proteins (NOS1, ERBB4, DLGAP2, NRXN3)
which were among the top 1000 leading AD-associated single rare
variants and regions [19], and 4 proteins (GRIN1, GRIN2A, GRIN2B,
GAPDH) associated with AD in the KEGG Alzheimer’s pathway.
DLG2 and DTNB also share protein-protein or co-expression
interactions through KIF1B, MLC1, and SH3D19.

DISCUSSION
Here, we describe a comprehensive region-based analysis of
Alzheimer’s disease using WGS datasets. We specifically searched
for novel AD association signals driven by regions of rare variants in
a large family-based cohort. To account for different disease region
specifications, we employed both the burden test and SKAT. This
yielded seven regions of suggestive evidence (p < 5 × 10−6) for
association with AD risk in the family datasets. These results were
followed up with replication analysis in independent case-control
samples of different ethnicities. Two loci, DTNB and DLG2, showed
consistent evidence of replication in the NHW subpopulation. The
DLG2 region was also confirmed in the African-American sample.
DLG2 encodes a member of the membrane-associated guany-

late kinase family, also known as post-synaptic density protein,
PSD-93. Down-regulation of synaptic scaffolding proteins, includ-
ing DLG2, has been described as an early event in AD [42]. DLG2
has been proposed as a potential target for AD based on an
integrated metabolomics-genetics-imaging systems approach in
Agora (URLs); agonism of DLG2 is predicted to reduce disease
progression. An expression dataset of AD in the GEO database
revealed reduced expression of DLG2 in AD versus controls. A
common variant in DLG2, rs683250, was previously associated
with increases of shape asymmetry in controls as compared to
individuals with dementia [43]. This same variant is in linkage
disequilibrium (LD, D’= 1) with all rare variants of the DLG2 region
found to be associated with AD here. DLG2 variant, rs286043
(AF= 0.03), which exhibited suggestive evidence for association
with AD risk in IGAP (p= 5e−06), is in LD with 4 out of 10 variants
from our DLG2 AD-associated region, suggesting possible allelic
heterogeneity. DLG2 has previously been associated with schizo-
phrenia [44] and autism [45, 46]. Along these lines, DLG2
deficiency in mice has been reported to lead to reduced sociability
and increased repetitive behavior along with aberrant synaptic
transmission in the dorsal striatum [47].
β-Dystrobrevin (DTNB) is associated with neurons in the cortex,

hippocampus, and cerebellum, as well as other brain regions,
implying that it might be an important protein involved in some
neuronal pathways in the brain [39], and has also been reported to
be enriched in the post-synaptic density (PSD), a protein complex
associated with postsynaptic membranes of excitatory synapses
[48, 49]. Kinesin superfamily motor proteins (KIF) are responsible
for anterograde protein transport within the axon of various
cellular cargoes, including synaptic and structural proteins [50].
Dysregulated KIF expression has also been associated with early
AD pathology [51], and β-Dystrobrevin interacts directly with
kinesin heavy chain in the brain [52]. Expression of α-Dystrobrevin
(DTNA), which a paralog of DTNB, has been associated with
dementia status and P-tau levels in temporal cortex [53].
Dystrobrevin-binding protein 1, also known as dysbindin, has been
reported to be associated with schizophrenia [54, 55]. Thus, both
novel AD gene candidates identified in this study have been
associated with post-synaptic function. They have also shownTa
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association with risk for schizophrenia. While schizophrenia and
Alzheimer’s disease have, generally, different etiologies (including
genetics), other studies have shown that there are some important
intersections between both diseases, especially related to post-
synaptic density proteins [56–58]. The two novel AD genes identified
here might be located at one of such functional intersections.
Family-based designs are completely robust to potential mis-

specification of disease model and population stratification. This led
us to define the family-based portion of our study as our “discovery”
dataset. In contrast, the “replication” portion of our study utilized
datasets from unrelated cases and controls. Two regions (DLG2 and
DTNB) were validated in the replication cohort. Utilizing the
increased sample size of the latest NIAGADS release, the replication
evidence became stronger for DLG2 and slightly decreased for DTNB.
Concurrent to our analyses, we became aware of an independent

WES study of AD cerebrospinal fluid (CSF) biomarker levels by
Neumann et al. [59]. Intriguingly, that study also identified rare
variants in DTNB showing experiment-wide rare-variant association
signals with the CSF biomarkers analyzed. Thus, there are now two
studies using independent datasets, sequencing techniques and
different AD-related outcome phenotypes converging on highly
significant rare-variant association signals in DTNB, emphasizing the
likely crucial – and hitherto unrecognized – role of this gene in AD
pathogenesis.
Our approach utilized two region-based tests (burden and

SKAT) in a family-based design, in which the joint distribution of
rare variants is not estimated, but rather obtained by the
haplotype algorithm for FBAT, which is robust against population
structure and admixture, and allows for construction of exact or
simulation-based p values. Previously, we performed region-based
rare variant testing, but with different region definitions, and using
only burden tests with empirical estimation of the variant
correlations and asymptotic p values [19]. We also note that by
utilizing a window size of 10 consecutive variants, we could have
missed sparsely distributed signals. Since the number of possible
haplotypes increases exponentially with the number of variants
tested, larger window sizes were computationally infeasible.
In summary, we identified two novel loci associated with AD,

based on association with rare variants in DLG2 and DTNB in a
family-based AD WGS sample using methods that are robust to
population structure. Both novel AD genes identified here encode
post-synaptic density proteins and have been implicated for roles in
schizophrenia. These loci showed replication in an independent AD
WGS dataset with unrelated cases and controls and, additionally,
DTNB was recently highlighted in independent work [59] on the
effect of rare-variants on AD CSF biomarker levels. In this separate
work Neumann et al. using WES reported rare-variant association
signals between DTNB and AD CSF biomarker levels in two
independent datasets, which makes further studies on the role of
DTNB in AD pathogenesis warranted.

URLs
FBAT, https://sites.google.com/view/fbatwebpage; gnomAD,
https://gnomad.broadinstitute.org/; Agora AMP-AD, https://agora.
ampadportal.org/genes; TOPMED, https://www.nhlbiwgs.org/;
Human Protein Atlas, https://www.proteinatlas.org/; GEO data-
base, https://www.ncbi.nlm.nih.gov/geo/; NIAGADS, https://www.
niagads.org/; StringDB, https://string-db.org/.

DATA AVAILABILITY
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part obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
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